jueves, 13 de febrero de 2020

Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions 
Sirami et al., 2019

Agricultural landscape homogenization is a major ongoing threat to biodiversity and the delivery of key ecosystem services for human well-being. It is well known that increasing the amount of seminatural cover in agricultural landscapes has a positive effect on biodiversity. However, little is known about the role of the crop mosaic itself. Crop heterogeneity in the landscape had a much stronger effect on multitrophic diversity than the amount of seminatural cover in the landscape, across 435 agricultural landscapes located in 8 European and North American regions. Increasing crop heterogeneity can be an effective way to mitigate the impacts of farming on biodiversity without taking land out of production.

Agricultural landscape homogenization has detrimental effects on biodiversity and key ecosystem services. Increasing agricultural landscape heterogeneity by increasing seminatural cover can help to mitigate biodiversity loss. However, the amount of seminatural cover is generally low and difficult to increase in many intensively managed agricultural landscapes. We hypothesized that increasing the heterogeneity of the crop mosaic itself (hereafter “crop heterogeneity”) can also have positive effects on biodiversity. In 8 contrasting regions of Europe and North America, we selected 435 landscapes along independent gradients of crop diversity and mean field size. Within each landscape, we selected 3 sampling sites in 1, 2, or 3 crop types. We sampled 7 taxa (plants, bees, butterflies, hoverflies, carabids, spiders, and birds) and calculated a synthetic index of multitrophic diversity at the landscape level. Increasing crop heterogeneity was more beneficial for multitrophic diversity than increasing seminatural cover. For instance, the effect of decreasing mean field size from 5 to 2.8 ha was as strong as the effect of increasing seminatural cover from 0.5 to 11%. Decreasing mean field size benefited multitrophic diversity even in the absence of seminatural vegetation between fields. Increasing the number of crop types sampled had a positive effect on landscape-level multitrophic diversity. However, the effect of increasing crop diversity in the landscape surrounding fields sampled depended on the amount of seminatural cover. Our study provides large-scale, multitrophic, cross-regional evidence that increasing crop heterogeneity can be an effective way to increase biodiversity in agricultural landscapes without taking land out of agricultural production.

 
(A) Traditional and (B) alternative representations of agricultural landscape heterogeneity, focusing either on seminatural heterogeneity or crop heterogeneity, are associated with distinct hypotheses.

.

No hay comentarios: