viernes, 31 de enero de 2020
miércoles, 29 de enero de 2020
Juan
de Cárdenas (circa 1628)
Quien oyere, decir por cosa cierta y
averiguada que Ia piedra del águila atada al muslo
llama y arranca tan de veras Ia criatura del vientre que hace
salir Ia matriz de su Iugar afuera, y quien a sí mismo oyera decir
que el carbunco en media de las tinieblas da lumbre y resplandor; que Ia aguja de marear, ella de su propia
virtud, se endereza y mira al norte; que Ia yerba llamada de los judíos baaras lanzaba los demonios, y que el
hombre o animal que Ia arrancaba primero al punta moría;
pues quien discurriendo par otras cosas supiese y entendiese como el animal
llamado hiena, con sólo su nombre, adormece a todos los demás animales, y el
pescadillo llamado rémora, con sólo arrimarse a un navío llendo a Ia
vela, lo detiene, sin dejarlo mover un punto; Ia
tremielga (torpedo)
que
con solo tacar el anzuelo o sedal del pescador, totalmente lo vuelve atónito y
sin sentido; Ia celidonia, que restaura Ia vista a los golondrinillos ciegos; Ia peonía, que sana y preserva las
criaturas de gota coral; las almendras amargas, que quitan Ia embriaguez y que el cuerno del
unicornio, puesto delante de cualquier veneno, suda y otras mil extrañas
propiedades, que por no ser enfadoso dejo de decir; quien, como digo, oye y
oyendo tiene por
cierto ser
así estas extrañas propiedades, que los antiguos autores nos escriben de muchas
casas,
no comprendo como dejar de dar crédito a las maravillosas y ocultos secretos,
que con tanto testimonio de verdad y aun dando razón bastante de todo podemos
escribir de este Nuevo Mundo de las lndias; todo lo cual si por ventura no se sabe
ni de ello se tiene noticia, es por falta, según entiendo, de escritores que saquen y
desentierren del abismo del olvido tan
peregrinos y excelentes efectos como todas estas occidentales provincias en si
contienen y encierran; y le vuelvo
a decir que se puede con justa razón lamentar toda esta indiana tierra de que,
sobrándole materia y copia de extrañas y excelentes grandezas, les falta quien
las predique y saque a Ia luz, de que no tendrá Asia, África y
Europa que quejarse, pues tiene y ha tenido mas escritores que de ellas
escriban que cosas poderse escribir. ¿Que pudo decir ni encarecer Plinio del cocodrilo que no escriba el
filosofo indiana del caimán de estas tierras? Pues cotejadas sus propiedades
con las del cocodrilo, son las del caimán muy notables y excelentes. ¿Que se
cuentan del elefante que no haya mucho mas en el rinoceronte de Ia India Oriental? ¿Que dijo Avicena de las
tortugas que no exista mucho mas en nuestras indianas icoteas, pues hay algunas en cuya concha
suelen caber seis hombres? ¿Que se pudo decir del víbaro o castóreo que no cuentan los
peruleros de Ia cervicabra o de las vicunas? ¿Que escriben los autores del
lagarto que no digamos en las lndias de las iguanas? ¿Que escribió
Dioscórides del erizo que no se oscurezca con las propiedades del armadillo de Ia Nueva España? ¿Que se cuenta de Ia raposa o comadreja que iguale a las
calidades del
tlacuazi (Zarigüeya), a quien Ia naturaleza por sellar de su mana, dio y
formo por Ia parte de afuera, en media del
vientre, un seno o balsa, donde trayendo sus hijos encerrados, puede correr y
saltar por doquiera y andar todos ellos mamando? Pues sí en el mundo hubo
sierpes y culebras ¿donde las pudo haber mayores que en esta tierra de las
Indias? Pues yerbas, frutas, pescados y animales ¿qué
lbros serian bastantes para ponerlo todo
en suma? He
dicho todo esto y usado de este preámbulo para que con razón se entienda Ia
lastima de esta tierra, pues a ella solo le faltaron escritores que ilustraran
y engrandecieran sus casas.
Horacio
Jorge Becco, José Ramón Medina. 1992. Historia
real y fantástica del Nuevo Mundo. Fundación Biblioteca Ayacucho.
domingo, 26 de enero de 2020
Reconciling biodiversity conservation, food production and farmers’ demand in agricultural landscapes
Montoya et al., 2019
https://www.sciencedirect.com/science/article/pii/S0304380019303977
.
Montoya et al., 2019
Efficient management of agricultural management should consider multiple
services and stakeholders. Yet, it remains unclear how to guarantee
ecosystem services for multiple stakeholders’ demands, especially
considering the observed biodiversity decline following reductions in
semi-natural habitat (SNH), and global change. Here, we use an ecosystem
service model of intensively-managed agricultural landscapes to derive
the best landscape compositions for different stakeholders’ demands, and
how they vary with stochasticity and the degree of pollination
dependence of crops. We analyse three groups of stakeholders assumed to
value different ecosystem services most – individual farmers (crop yield
per area), agricultural unions (landscape production) and
conservationists (biodiversity). Additionally, we consider a social
average scenario that aims at maximizing multifunctionality. Trade-offs
among stakeholders’ demands strongly depend on the degree of pollination
dependence of crops, the strength of environmental and demographic
stochasticity, and the relative amount of an ecosystem service demanded
by each stakeholder. Intermediate amounts of SNH deliver relatively high
levels of the three services (social average). Our analysis further
suggests that the current levels of SNH protection lie below these
intermediate amounts of SNH in intensively-managed agricultural
landscapes. Given the worldwide trends in agriculture and global change,
current policies should start to consider factors such as crop type and
stochasticity, as they can strongly influence best landscape
compositions for different stakeholders. Our results suggest ways of
managing landscapes to reconcile several actors’ demands and ensure for
biodiversity conservation and food production.
https://www.sciencedirect.com/science/article/pii/S0304380019303977
.
sábado, 25 de enero de 2020
viernes, 24 de enero de 2020
,
Cualquier cosa contraria a la Naturaleza lo es también a la razón y cualquier cosa que sea contraria a la razón es absurda
Baruch Spinoza
.
Cualquier cosa contraria a la Naturaleza lo es también a la razón y cualquier cosa que sea contraria a la razón es absurda
Baruch Spinoza
.
jueves, 16 de enero de 2020
Linking global crop and livestock consumption to local production hotspots
Sun et al., 2019
Sun et al., 2019
The first spatial assessment of crops and livestock embodied in trade.
A road network served to allocate between domestic consumption and exports.
Food production for high-income countries is spread over larger areas.
Per-capita food consumption in high-income countries far exceeds tentative targets.
International trade plays a critical role in global food security, with
global consumption having highly localized environmental impacts. It has
been difficult to gain insights into these effects due to the diversity
of food production, and complexity of supply chains in international
trade. We present a Spatially-explicit Multi-Regional Input-Output
(SMRIO) model which couples primary crops and livestock at a high
spatial resolution with a global Multi-Regional Input-Output (MRIO)
model. We then identify hotspots (the most significant production
regions) for primary crops and livestock driven by international
consumption. We present the method and data behind this approach, and
provide illustrative case studies for Indonesian palm oil and Brazilian
soy and beef production. Regionally, China is the largest primary crop
consumer, while the EU28 is the largest livestock consumer. Primary
crops and livestock hotspots are highly unequal, and the embodied
primary crops and livestock for high-income countries are distributed
over larger areas when compared to lower-income countries since
high-income countries have more numerous trade links. Identified
hotspots could allow for increased cooperation between consumers
(high-income countries) and producers (lower-income countries) to
improve sustainability programs for global food security.
.
lunes, 13 de enero de 2020
.
The universe exists solely of waves of motion.There exists nothing other than vibration.
Walter Russell
.
sábado, 11 de enero de 2020
jueves, 9 de enero de 2020
International scientists formulate a roadmap for insect conservation and recovery
Harvey et al., 2020.
To the Editor — A
growing number of studies are providing evidence that a suite of
anthropogenic stressors — habitat loss and fragmentation, pollution,
invasive species, climate change and overharvesting — are seriously
reducing insect and other invertebrate abundance, diversity and biomass
across the biosphere1,2,3,4,5,6,7,8.
These declines affect all functional groups: herbivores, detritivores,
parasitoids, predators and pollinators. Insects are vitally important in
a wide range of ecosystem services9 of which some are vitally important for food production and security (for example, pollination and pest control)10.
There is now a strong scientific consensus that the decline of insects,
other arthropods and biodiversity as a whole, is a very real and
serious threat that society must urgently address11,12,13.
In response to the increasing public awareness of the problem, the
German government is committing funds to combat and reverse declining
insect numbers13.
This funding should act as a clarion call to other nations across the
world — especially wealthier ones — to follow suit and to respond
proactively to the crisis by addressing the known and suspected threats
and implementing solutions.
We hereby propose a global ‘roadmap’ for insect conservation and recovery (Fig. 1). This entails the immediate implementation of several ‘no-regret’ measures (Fig. 1,
step 1) that will act to slow or stop insect declines. Among the
initiatives we encourage are the following immediate measures:
Taking aggressive steps to
reduce greenhouse gas emissions; reversing recent trends in agricultural
intensification including reduced application of synthetic pesticides
and fertilizers and pursuing their replacement with agro-ecological
measures; promoting the diversification and maintenance of locally
adapted land-use techniques; increasing landscape heterogeneity through
the maintenance of natural areas within the landscape matrix and
ensuring the retention and creation of microhabitats within habitats
which may be increasingly important for insects during extreme climatic
events such as droughts or heatwaves; reducing identified local threats
such as light, water or noise pollution, invasive species and so on;
prioritizing the import of goods that are not produced at the cost of
healthy, species-rich ecosystems; designing and deploying policies (for
example, subsidies and taxation) to induce the innovation and adoption
of insect-friendly technologies; enforcing stricter measures to reduce
the introduction of alien species, and prioritizing nature-based tactics
for their (long-term) mitigation; compiling and implementing
conservation strategies for species that are vulnerable, threatened or
endangered; funding educational and outreach programs, including those
tailored to the needs of the wider public, farmers, land managers,
decision makers and conservation professionals; enhancing ‘citizen
science’ or ‘community science’ as a way of obtaining more data on
insect diversity and abundance as well as engaging the public,
especially in areas where academic or professional infrastructure is
lacking; devising and deploying measures across agricultural and food
value chains that favour insect-friendly farming, including tracking,
labelling, certification and insurance schemes or outcome-based
incentives that facilitate behavioural changes, and investing in
capacity building to create a new generation of insect conservationists
and providing knowledge and skills to existing professionals
(particularly in developing countries).
To better understand changes in insect abundance and diversity, research should aim to prioritize the following areas:
Quantifying
temporal trends in insect abundance, diversity and biomass by
extracting long-term datasets from existing insect collections to inform
new censuses; exploring the relative contributions of different
anthropogenic stressors causing insect declines within and across
different taxa; initiating long-term studies comparing insect abundance
and diversity in different habitats and ecosystems along a
management-intensity gradient and at the intersection of agricultural
and natural habitats; designing and validating insect-friendly
techniques that are effective, locally relevant and economically sound
in agriculture, managed habitats and urban environments; promoting and
applying standardized monitoring protocols globally and establishing
long-term monitoring plots or sites based on such protocols, as well as
increasing support for existing monitoring efforts; establishing an
international governing body under the auspices of existing bodies (for
example, the United Nations Environment Programme (UNEP) or the
International Union for Conservation of Nature (IUCN)) that is
accountable for documenting and monitoring the effects of proposed
solutions on insect biodiversity in the longer term; launching
public–private partnerships and sustainable financing initiatives with
the aim of restoring, protecting and creating new vital insect habitats
as well as managing key threats; increasing exploration and research to
improve biodiversity assessments, with a focus on regional capacity
building in understudied and neglected areas, and performing large-scale
assessments of the conservation status of insect groups to help define
priority species, areas and issues.
Most
importantly, we should not wait to act until we have addressed every
key knowledge gap. We currently have enough information on some key
causes of insect decline to formulate no-regret solutions whilst more
data are compiled for lesser-known taxa and regions and long-term data
are aggregated and assessed. Implementation should be accompanied by
research that examines impacts, the results of which can be used to
modify and improve the implementation of effective measures.
Furthermore, such a ‘learning-by-doing’ approach ensures that these
conservation strategies are robust to newly emerging pressures and
threats. We must act now.
https://go.nature.com/35tqnEc
.
https://go.nature.com/35tqnEc
.
lunes, 6 de enero de 2020
.
The historical record makes Homo sapiens look like an ecological serial killer.
Yuval Noah Harari, Sapiens: A Brief History of Humankind
.
The historical record makes Homo sapiens look like an ecological serial killer.
Yuval Noah Harari, Sapiens: A Brief History of Humankind
.
viernes, 3 de enero de 2020
Increase in crop losses to insect pests in a warming climate
Deutsch et al., 2019
Deutsch et al., 2019
Crop responses to climate warming suggest that yields will decrease as growing-season temperatures increase. Deutsch et al.
show that this effect may be exacerbated by insect pests. Insects already consume 5 to 20% of major grain
crops. The authors' models show that for the three most important grain
crops—wheat, rice, and maize—yield lost to insects will increase by 10
to 25% per degree Celsius of warming, hitting hardest in the temperate
zone. These findings provide an estimate of further potential climate
impacts on global food supply and a benchmark for future regional and
field-specific studies of crop-pest-climate interactions.
Insect pests substantially reduce yields of three staple grains—rice,
maize, and wheat—but models assessing the agricultural impacts of global
warming rarely consider crop losses to insects. We use established
relationships between temperature and the population growth and
metabolic rates of insects to estimate how and where climate warming
will augment losses of rice, maize, and wheat to insects. Global yield
losses of these grains are projected to increase by 10 to 25% per degree
of global mean surface warming. Crop losses will be most acute in areas
where warming increases both population growth and metabolic rates of
insects. These conditions are centered primarily in temperate regions,
where most grain is produced.
, for two different values of the demographic parameter governing survival during diapause (ϕo = 0.0001, asterisks; ϕo
= 0.001, circles), and for the metabolic effect alone (triangles).
Mt/yr, metric megatons per year. The year in which a given global mean
temperature anomaly is reached (D) depends on the
greenhouse gas emissions scenario (RCP, representative concentration
pathway) and varies across models (shading) owing to uncertainty in
climate sensitivity to those emissions. Crop production losses for (A) wheat, (B) rice, and (C)
maize are computed by multiplying the fractional change in population
metabolism by the estimated current yield loss owing to insect pests,
summed over worldwide crop locations. Results are plotted versus mean
global surface temperature change, for four climate models
.
miércoles, 1 de enero de 2020
.
Nothing is invented, for it's written in nature first
Antonio Gaudí
.
Nothing is invented, for it's written in nature first
Antonio Gaudí
.
Suscribirse a:
Entradas (Atom)