martes, 19 de junio de 2018

A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes

Lichtenberg et al., 2017.

Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species rich- ness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversi- fication on abundance, local diversity (communities within fields), and regional diver- sity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem ser- vice providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacom- munities that may provide temporal and spatial stability of ecosystem service provi- sioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes.

Effects of farm management schemes on abundance (a, b) and richness (c, d) of common vs. rare taxa in simple and complex landscapes. Mean log- response ratios (SE) of (left column) adopting organic farming and (right column) promoting in-field plant diversity. A“*”below a pair of means indicates a significant difference between rare and common taxa within a landscape complexity category (determined via paired t-tests; a=0.1; Tables S19.

No hay comentarios: