Mutualism provides a basis for biodiversity in eco-evolutionary community assembly
Gui Araujo,Miguel Lurgi
Ecological communities are considerably more complex than simple collections of species sharing the same environment. The large number of ecological interactions among species drives changes in populations through time that dictate the persistence of the entire community. Most research into the mechanisms of biodiversity considers different interaction types (mutualism, competition, consumer-resource) in isolation in either ecological or evolutionary contexts. In this study, we developed a community growth model that incorporates mutualism, competition, and consumer-resource interactions and considers both ecological and evolutionary mechanisms of assembly together. We found that communities formed via evolutionary speciation can reach higher species richness and exhibit greater proportions of mutualistic interactions than purely ecological models, resulting in more complex community structures. High levels of mutualism lead to communities more resilient to disturbances, such as the arrival of new species or sudden changes in abundances. Our research extends previous efforts by aiming to understand how evolutionary processes shape the diversity of ecological interactions and the role of these interactions in species persistence. Such knowledge is essential for preserving and restoring ecosystems in the face of growing environmental degradation.
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1013402
No hay comentarios:
Publicar un comentario
Por favor, deja tu comentario